Penyetelan Kinerja Penjadwal
Kubernetes v1.14 [beta]
kube-scheduler merupakan penjadwal (scheduler) Kubernetes bawaan yang bertanggung jawab terhadap penempatan Pod-Pod pada seluruh Node di dalam sebuah klaster.
Node-Node di dalam klaster yang sesuai dengan syarat-syarat penjadwalan dari sebuah Pod disebut sebagai Node-Node layak (feasible). Penjadwal mencari Node-Node layak untuk sebuah Pod dan kemudian menjalankan fungsi-fungsi untuk menskor Node-Node tersebut, memilih sebuah Node dengan skor tertinggi di antara Node-Node layak lainnya, di mana Pod akan dijalankan. Penjadwal kemudian memberitahu API server soal keputusan ini melalui sebuah proses yang disebut Binding.
Laman ini menjelaskan optimasi penyetelan (tuning) kinerja yang relevan untuk klaster Kubernetes berskala besar.
Pada klaster berskala besar, kamu bisa menyetel perilaku penjadwal untuk menyeimbangkan hasil akhir penjadwalan antara latensi (seberapa cepat Pod-Pod baru ditempatkan) dan akurasi (seberapa akurat penjadwal membuat keputusan penjadwalan yang tepat).
Kamu bisa mengonfigurasi setelan ini melalui pengaturan percentageOfNodesToScore
pada kube-scheduler.
Pengaturan KubeSchedulerConfiguration ini menentukan sebuah ambang batas untuk
penjadwalan Node-Node di dalam klaster kamu.
Pengaturan Ambang Batas
Opsi percentageOfNodesToScore
menerima semua angka numerik antara 0 dan 100.
Angka 0 adalah angka khusus yang menandakan bahwa kube-scheduler harus menggunakan
nilai bawaan.
Jika kamu mengatur percentageOfNodesToScore
dengan angka di atas 100, kube-scheduler
akan membulatkan ke bawah menjadi 100.
Untuk mengubah angkanya, sunting berkas konfigurasi kube-scheduler (biasanya /etc/kubernetes/config/kube-scheduler.yaml
),
lalu ulang kembali kube-scheduler.
Setelah kamu selesai menyunting, jalankan perintah
kubectl get componentstatuses
untuk memverifikasi komponen kube-scheduler berjalan dengan baik (healthy). Keluarannya kira-kira seperti ini:
NAME STATUS MESSAGE ERROR
controller-manager Healthy ok
scheduler Healthy ok
...
Ambang Batas Penskoran Node
Untuk meningkatan kinerja penjadwalan, kube-scheduler dapat berhenti mencari Node-Node yang layak saat sudah berhasil menemukannya. Pada klaster berskala besar, hal ini menghemat waktu dibandingkan dengan pendekatan awam yang mengecek setiap Node.
Kamu bisa mengatur ambang batas untuk menentukan berapa banyak jumlah Node minimal yang dibutuhkan, sebagai persentase bagian dari seluruh Node di dalam klaster kamu. kube-scheduler akan mengubahnya menjadi bilangan bulat berisi jumlah Node. Saat penjadwalan, jika kube-scheduler mengidentifikasi cukup banyak Node-Node layak untuk melewati jumlah persentase yang diatur, maka kube-scheduler akan berhenti mencari Node-Node layak dan lanjut ke [fase penskoran] (/id/docs/concepts/scheduling-eviction/kube-scheduler/#kube-scheduler-implementation).
Bagaimana penjadwal mengecek Node menjelaskan proses ini secara detail.
Ambang Batas Bawaan
Jika kamu tidak mengatur sebuah ambang batas, maka Kubernetes akan menghitung sebuah nilai menggunakan pendekatan linier, yaitu 50% untuk klaster dengan 100 Node, serta 10% untuk klaster dengan 5000 Node.
Artinya, kube-scheduler selalu menskor paling tidak 5% dari klaster kamu, terlepas dari
seberapa besar klasternya, kecuali kamu secara eksplisit mengatur percentageOfNodesToScore
menjadi lebih kecil dari 5.
Jika kamu ingin penjadwal untuk memasukkan seluruh Node di dalam klaster ke dalam penskoran,
maka aturlah percentageOfNodesToScore
menjadi 100.
Contoh
Contoh konfigurasi di bawah ini mengatur percentageOfNodesToScore
menjadi 50%.
apiVersion: kubescheduler.config.k8s.io/v1alpha1
kind: KubeSchedulerConfiguration
algorithmSource:
provider: DefaultProvider
...
percentageOfNodesToScore: 50
Menyetel percentageOfNodesToScore
percentageOfNodesToScore
merupakan angka 1 sampai 100 dengan
nilai bawaan yang dihitung berdasarkan ukuran klaster. Di sini juga terdapat
batas bawah yang telah ditetapkan, yaitu 100 Node.
Catatan:
Pada klaster dengan kurang dari 100 Node layak, penjadwal masih terus memeriksa seluruh Node karena Node-Node layak belum mencukupi supaya penjadwal dapat menghentikan proses pencarian lebih awal.
Pada klaster kecil, jika kamu mengatur percentageOfNodesToScore
dengan angka kecil,
pengaturan ini hampir atau sama sekali tidak berpengaruh, karena alasan yang sama.
Jika klaster kamu punya ratusan Node, gunakan angka bawaan untuk opsi konfigurasi ini. Mengubah angkanya kemungkinan besar tidak akan mengubah kinerja penjadwal secara berarti.
Sebuah catatan penting yang perlu dipertimbangkan saat mengatur angka ini adalah ketika klaster dengan jumlah Node sedikit diperiksa untuk kelayakan, beberapa Node tidak dikirim untuk diskor bagi sebuah Pod. Hasilnya, sebuah Node yang mungkin memiliki nilai lebih tinggi untuk menjalankan Pod tersebut bisa saja tidak diteruskan ke fase penskoran. Hal ini berdampak pada penempatan Pod yang kurang ideal.
Kamu sebaiknya menghindari pengaturan percentageOfNodesToScore
menjadi sangat rendah,
agar kube-scheduler tidak seringkali membuat keputusan penempatan Pod yang buruk.
Hindari pengaturan persentase di bawah 10%, kecuali throughput penjadwal sangat penting
untuk aplikasi kamu dan skor dari Node tidak begitu penting. Dalam kata lain, kamu
memilih untuk menjalankan Pod pada Node manapun selama Node tersebut layak.
Bagaimana Penjadwal Mengecek Node
Bagian ini ditujukan untuk kamu yang ingin mengerti bagaimana fitur ini bekerja secara internal.
Untuk memberikan semua Node di dalam klaster sebuah kesempatan yang adil untuk
dipertimbangkan dalam menjalankan Pod, penjadwal mengecek Node satu persatu
secara round robin. Kamu dapat membayangkan Node-Node ada di dalam sebuah array.
Penjadwal mulai dari indeks array pertama dan mengecek kelayakan dari Node sampai
jumlahnya telah mencukupi sesuai dengan percentageOfNodesToScore
. Untuk Pod berikutnya,
penjadwal melanjutkan dari indeks array Node yang terhenti ketika memeriksa
kelayakan Node-Node untuk Pod sebelumnya.
Jika Node-Node berada di beberapa zona, maka penjadwal akan mengecek Node satu persatu pada seluruh zona untuk memastikan bahwa Node-Node dari zona berbeda masuk dalam pertimbangan kelayakan. Sebagai contoh, ada 6 Node di dalam 2 zona:
Zona 1: Node 1, Node 2, Node 3, Node 4
Zona 2: Node 5, Node 6
Penjadwal mempertimbangkan kelayakan dari Node-Node tersebut dengan urutan berikut:
Node 1, Node 5, Node 2, Node 6, Node 3, Node 4
Setelah semua Node telah dicek, penjadwal akan kembali pada Node 1.